30 - 11 - 2024
Login Form



 


Share this post

Submit to FacebookSubmit to TwitterSubmit to LinkedIn

What’s New: The Defense Advanced Research Projects Agency (DARPA) has awarded Intel Federal LLC with support from Intel Labs and its collaborators, the Computer Vision Center Barcelona, Spain, and the University of Texas at Austin, the opportunity to develop advanced simulation solutions for off-road autonomous ground vehicles. The Robotic Autonomy in Complex Environments with Resiliency – Simulation (RACER-Sim) program aims to create the next generation of off-road simulation platforms to significantly reduce the development cost and bridge the gap between simulation and the real world. 

“Intel Labs has already made progress in advancing autonomous vehicle simulation through several projects, including the CARLA simulator, and we’re proud to participate in RACER-Sim to continue contributing to the next frontier of off-road robotics and autonomous vehicles. We brought together a team of renowned experts from the Computer Vision Center and UT Austin with the goal of creating a versatile and open platform to accelerate progress in off-road ground robots for all types of environments and conditions.”

–German Ros, Autonomous Agents Lab director at Intel Labs
Why It Matters: In the context of autonomous driving, the gap between on-road and off-road deployment is still very significant. Many simulation environments exist today, but few are optimized for off-road autonomy development at scale and speed. Additionally, real-world demonstrations continue to serve as the primary method to verify system performance. 

Off-road autonomous vehicles must deal with substantial challenges, including a lack of road networks and extreme terrain with rocks and all types of vegetation, among many others. Such extreme conditions make developing and testing expensive and slow. The RACER-Sim program aims to solve this problem by providing advanced simulation technologies to develop and test solutions, reducing deployment time and validation of AI-powered autonomous systems.